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Thick boundary-layer equations, including the variation of the metric ol

coefficients with distance normal to the surface. are solved from the nose £
to the tail of an elongated three dimensional body. lteration between N
potential and boundary-layer flow solutions is adopted to obtain a e
converged solution in the stern region. The complete procedure makes use e
of Keller’s box numerical scheme in a non-orthogonal curvilinear sl
coordinate system and an isotropic eddy-viscosity model for the Reynolds e

stress tensor in both streamwise and crosswise directions. The numerical
method allows the calculation of flows in which the crosswise component
of velocity comains regions of flow reversal across the boundary layer. The
inviscid pressure is determined by using the Hess-Smith method. The
program is validated for an axisymmetric body and then the calculations
are compared with measurcments for two three-dimensional bodics having
elliptical transverse sections.

ADMINISTRATIVE INFORMATION
This research was funded by the General Hydrodynamics Research Program. Program Element
61153N. Task Area SRO230101. DTNSRDC Work Unit 1542070

INTRODUCTION

When compared to the thin hull boundary laver. much less progress has been made in the
prediction of the three-dimensional (3-D) thick stern turbulent boundary faver and wake which involve
higher-order effects. Only three out of the seventeen prediction methods in the SSPA ITTC 1980 Ship
Boundary Layer Workshop!*considered higher-order effects. This s because of (a) the complexity of the
3-D flow. and (b) the existence of flow separation and trathing voruaty Complete computational solutions
of the full Navier-Stokes equations are still imited to fammar ume averaged turbulent flows. These
computations require the use of computers having farge core memories and high speed processors. Seeking
solutions for higher-order cquations. whose complexity ltes somewhere between that ot the Revnolds and
the thin boundary layer equations for turbtdent ow, i a corrent on poimng research topie in
computational ship hydrodynamics.

Two different approaches exist for solving hugher order cquations The tirst approach simphfies the
Reynolds equations by discarding the terms refated to streamwise diffusion The resulung equations are
called the partially parabolic cquations. Examples of this approach are contamed i Reterences 20 30 and
4. The second approach generalizes the first order boundary laser equations by antroducimyg terms related
to the secand-arder curvature effects. The complete solution procedure imcludes siscous mvisaid inter
action to account for deficiencies in the governing cquations as well as in the numenical solution

technigues. This approach has been widely used by the arrcratt mdustry: appheations to ship flows are

*A complete listing of references is given on page 33,
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:j:'. given in References S and 6. The parabolic nature of the equations comprising the latter approach T:S
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indicates the downstream pressure field does not influence upstream flow characteristics. Through the

viscid-inviscid interaction process, the solutions are corrected by successive global iterations. Although
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¢
X
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a0,

Abdelmequid et al.? has made some comparisons between the two approaches. he unfortunately adopted

the second approach without including interactions. It is still not known which approach gives better

v

o e

(3
Far JanY

h ]

predictions. o+

i In this paper. the numerical method of Cebeci et al.’ for solving 3-D boundary layers is expanded L'
::.“' to include the curvature terms for thick stern boundary layers. Several new geometrical parameters are
mtroduced by using the original nonorthogonal coordinate system. The boundary conditions at the edge
‘::: of the thick boundary layer are updated in the global iterations between viscous and inviscid solutions. ;~
i Some encouraging resulis have been obtained for an axisymmetric flow and two 3-D flows with h
g separation. In their survey of boundary-layer theory for flow with separation. McDonald and Briley8
& concluded that 2-D flows with mild separation can be treated by applying an interaction procedure to the \\
T

boundary-layer equations. The present results shed some light on extending this approach to 3-D flows.

e
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COORDINATE SYSTEM

A curvilinear nonorthogonal surface-fitted coordinate system is used to represent ship-hull surfaces.

v et
PR
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P
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e

Figure 1 depicts this coordinate system (x, y, z) along with Cartesian coordinates (X, ¥. z). Here, o is the oo
angle between x and z, and y is normal to the hull surface. The potential flow solution for a ship hull is -
solved in terms of the Cartesian coordinates and the boundary-layer equations are expressed in the (x. vy, " ..
21 coordinate system. We select x = x, and z lies in the yz-plane. Because the coordinate system is J::
nonorthogonal, we are free to select the valuc of z in the plane to satisfy the condition that the t—-
boundary line of the ship hull s coincident with the 2 = constant coordinate line. In this paper. z is e

determimed by mapping cach V7 crossplane into a halt-unit circle by the numerical method developed by
Halsev”. The polar angle. normalized by n on the unit circle. is taken as the z-value. The z-values then
range from 0 to 1 on each crossplane. The advantage of the mapping method is that equicinterval, 2z =
constant. coordinate hines are automatically concentrated in the region of large curvature where the
boundiry laver characteristics are expected to vary greatly. '_'*-j'_.
In this nonorthogonal coordinate svstem. the geodesic curvatures of the curves. 7 = constant. in -

the direction of x and the curves x = constant iy the direction of 2 are given i Reference 7 as

| J Jh, ol
Ki‘ T - - s ‘h\ CON u| e :‘. ..-_
h‘ hy st e LJ : A RS
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I J ()h\
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and the geodesic curvatures of the curves, y = constant, in the directions of x and z are

1 ah, .
B By
)
I ah, .
Ky == ==
% Since y is selected to be normal to the hull surface, the metric coefficient h; can be chosen as unity.
e Along the x and z directions, h; and h, are, in general, functions of x,y, and z; that is
~ hl = hl (x’ y’ Z)
hy = hy (x, ¥, 2)
Expanding h| and h, in series about the coordinate origin leads to
R I L + ,
= y — et PR
(3)
o T | ah, . ] .
- + _— o

where h,4 and h,, are the corresponding values at the surface and are given in Reference 7,

ay \ a7 \21"

ho = 10+ {57) Y50 e
ox ax .

(4)

7 -

N N ’ L[z - —
20 dz dz o

By comparing Equation (3) to Equation (2) and dropping the higher order terms in the series expansion.
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1] .l'l
R

v

by = hyyay o by = hyoa, (5)
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where K34 and K5, are the surface curvatures of K5 and K, ;. Substitution of Equation (5) into
Equation (2) resuits in

K K
Ky = 130 | K, = 2% 0

Z a,

&

The other related geometric parameters are given in. Reference 7.

GOVERNING EQUATIONS
BOUNDARY-LAYER EQUATIONS
The governing second-order boundary-layer equations for a steady, incompressible, laminar or
turbulent flow in the present curvilinear nonorthogonal coordinate system are given’-10 by:
Continuity Equation

2 a i)
— (uh, sin @) + — (wh, sin a)l + — (vh, h,sina) = 0 8)
ax : ‘ az l i ay P l

x-Momentum Equation

u du w du du
_— —+ — — + v———Klzuzcota + Ky, wlcsca + K, uw + K,; uv
hy ax h, az ay
9
2
csc-a 9 cotacsca @ ] /]
N A R
h, 3x \e h, az \ ¢ h, by ay
2-Momentum Equation
u aw W aw ow
— — + — — + v— — K, wlcot a + Kpu3CSCa + Ky uw + K,y wy
h, ax h, az ay - - - -
{10}

cotacsca 0 ) cscta 3 p | d
_cotacsca 9 P\ _(—) + = (h, hy 1)
h, 2x \ o h, az\oe h, h, dy -
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y-Momentum Equation

u av w v av 2
—-—+——‘+V——KI3UZ—K23WZ=—— _p (1
h, ax h, az ay ay \ ¢

where the parameters K|, K,, 7, and 7, are defined by

! ! da |l da
K, = —{Kp+— — ] + Ky + — —
l Sina[ ( 12 hl ax) cos a ( 2 h2 az)]

1 | da 1 o
K, = - -<K’| + — —) + cos a (Kl, + — i (12)
- sin o - h, adz - h, ax
Ty ou —_ T, ow _
—_— =y — — UV | — =y — — W
e y e y

and u, v, and w represent the velocity components in the x, y, and z directions, respectively. The

u v and gV W

parameters p, ¢ and v are the fluid static pressure, density, and kinematic viscosity; g are

Reynolds stresses. The non-slip boundary condition is applied at the wall, i.e., y = 0. At the edge of the
boundary layer, i.e.. y = d. Equations (9) to (11) can bc written as

u, du w, Jdu
ety € ¢ K, ulcote + Ky wiesca + Kypou v, + Kjou, W,
h ax h 3z 12e Ve 2le Ve 13¢ ¢ Ve ee
> Vo
le ¢ (13)
cseta d (p) s cot a csCc a @ (p>
hlc ax e/ ¢ hlc az e/
u, Ow w, dw , 5
¢ ¢ ¢ ¢ J 2 L
Pl + H»— YO K, Wg cot a + K| uzcsca + KZe u, w, + K:Jc W, v,
le Je
¢ (14)

cotacsCa 9 (p) cscla d (p)
th ax Q ¢ hzc al Q ¢

, N 3
- I\|3c s — KZchc - T A,

_ —— —_ \C —
hlc X hlc 97 ay

u, av, N We av, v, - 2 (D) 0s)
¢
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Thus at y = 4, the pressure gradient terms can be expressed in terms of u,, v, and w,. In the numerical
cxamples shown later, the boundary-layer Equations (9), (10), (13), and (14) are solved simultaneously
. through the procedures described in the following sections.

TURBULENCE CLOSURE
Cebeci-Smith Eddy-Viscosity Model

Solutions of Equations (9) and (I0) require some parameterization of the shear stresses 1, and 1,.
Cebeci’ used an isotropic eddy-viscosity concept for his 3-D computation. These 3-D formulas are given

dS

e L B R (16)
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The eddy viscosity g is divided into the inner and outer layers. They are continuously connected

aty = y.. where (e ) = o In the inner region, (e, is defined as

(€,

auy  [oaw)? auy faw\ "
e = 9’ (-—) + (——) + 2C0s a (——) (-——) Yir (7
dy ay ay ay

where ¢ is a mixing-length approximation equal to 0.4 y [1-exp(1-y/A)], A is a damping factor equal to
26vlu,. and u_is the shear velocity. Also y_ is an intermittency factor to account for the turbulent and
nonturbulent flows produced by the fluctuating outer edge of the boundary layer, and is defined in

Reference 11, In the outer region, (e ) becomes

m ’()

= 0.0168 u, &)y, (18)

m \)

where d * is the planar displacement thickness and u,, is the total velocity aty = d.

Modified Eddy - Viscosity Model
In order to calculate a thick 3-D boundary layer by means of the eddy-viscosity concept. it is
necessany Lo include the curvature effect!” in the eddy-viscosity formulations. In the appendix. a formula

s derived to modify the inner eddy-viscosity. Equation (17), by

» au,
- ‘illl’l = OI 02 Q_ *a—\—' Y“, 'lg)
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where

0.4 In a,/
—_— In(g)h—exp [—ﬁa'—] cap # ooy

Ky30—Ki39 o /| (Ky30—K300A :
= (20)
04y l —exp {— R a), = a )
a) ( A ) o 2

For the outer-layer eddy viscosity, a constant value 0.0168 was used in Cebeci’s original model, as
shown in Equation (18). This has been proved to be inadequate for a thick turbulent boundary layer!3.14,
A suggested revised form was proposed for an axisymmetric case in Reference 14. For a simple extension

of Reference 14, the following formulas are used to account for the curvature effect on the outer-layer
eddy viscosity when K230 éd =202

o = 2 (0.0168)u,.8 y,, 21)

where

_ Y140.6 Ky 6)—1
F 2.522 Ky 4

The value of £ becomes \/\(r0+0.6d)2—r02 12.5224 for the axisymmetric thick boundary layer, a formula
originally proposed by Huang et al.!3:14

Huang's Eddy-Viscosity Model

From three sets of measurements!3-1316 for one axisymmetric and two 3-D bodies, Huang has
obtained a single correlation!’ to represent the eddy viscosity distribution in 3-D thick-stern boundary
lavers. Huang's turbulence model is used as a two-layer isotropic eddy-viscosity model. It preserves the
('checi-Smith inner-layer eddy viscosity, as shown in Equation (17). The outer-layer eddy viscosity uses
f-quation (18) unless Ap/A > 1.513 and dK»;3¢> 0.23, where Ap is the effective turbulence area defined
i Reference 17 as 60% of the flow passage area and A is the cross-sectional area at the same axial
lncation. In order to accommodate the present numerical method described in the later section, a
constant eddy viscosity selected for the entire outer layer is given by




where

2= 0.169 V' ALIn (yld) exp[—1.2(yld) — 1.0667(y/d)’]

TRANSFORMED BOUNDARY-LAYER EQUATIONS

The boundary-layer Equations (8) to (10) are solved in the form of transformed equations by using
the following transformed variables:

X
u
£=x.c=L.dn=I—edy.sl=/ h, dx 22)
VS] 0

A two-component vector potential, which satisifies continuity, Equation (8), is defined as

{23)

U .
¢ = vis) u, -u—" hygsinagle &n

€

where u, is the ship speed. Accordingly, the three velocity components in the momentum equations can
be cast as

— = —_ = — v = — —£G
U, a>» 0 ) ap @ Sy
with
24
G ; at ag p
y=mft +mg + m,— +m;, — + mmf + m '
| b 0 5 Y 1N 16N8
Here. primes denote differentiation with respect to n. and all the coefficients myi = 1,2, . . .. 27) arc

defined in the notation scction.
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In order to further reduce the complexity of the boundary-layer equations, we introduce the
following parameters to replace the dependent variables.

- u f’ - fl ’ -
Uu=—=-- Vv = - =u

UC a: a:

, N : 75

~ W g ~ (&Y .. 22
W = — = — ( = e = W

U, a a
G =G

By using the transformed Equations (22) to (25), the boundary-layer equations are finally written as five
first-order partial differential equations, given as:

x-Momentum Equation

~ ~ ~ -~ ~)
1a|asz) + (V+m|2l” (l —_ a:(n1:t_a|m2d’ u- — alazmgw_

— 03'1'“@7— alnmI(:VW — al‘mic + awm;leJW {26)
_ou . au
+ alann]“ = ajn]l()u — + a|m7W ——
- - a a¢

7-Momentum Equation

~ 3y

~ ~ ~ =~ —
foasbty + (t+m W) G — ajay My 07 — aja,mWw
— awm, UT— oM W — a a.mUw 07

~ OW . oW

+ alaznllz = a:'nl()u 3{ + 0|n17“ -a—(

Continuity Equation

au aw

— a, m nT:a,m — 4+ am, —
16 _l()aé |76C

10
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U=V (29)
w =T (30)

where b is the dimensionless eddy viscosity and is equal to 1+e¢. /u. The nonslip conditions at the surface
are transformed to ¥ = W = G = 0. The conditions at the edge of the boundary layer require U = 1
and W = w/u. Equations (13) and (14) for the pressure gradients at the boundary-layer edge are
embedded in the parameters m;; and m,,.

EQUATIONS ALONG THE KEEL LINE

In Figure 1, the keel line is identified as the line of symmetry. For a double model, the water line
also becomes a symmetry line. On this symmetry plane, w and ap/dz are zero, thus causing the
z-momentum equation to be singular. However, differentiation with respect to z yields a nonsingular
equation. After performing the necessary differentiation for the z-momentum equation and applying the
appropriate symmetry conditions, we obtain the following equations: ’

Continuity Equation

d . . a .
P (uh, sin a) + h sinaw, + > (v h, hysinal = 0 31
L luhy : y 2

x-Momentum Equation

u du du u, Jdu

—_ 4+ v — —K,,ulcota + Kyuv =% ¢ — K., ulcota
32)
+ Kl}c uc VC + l h2 —y ‘hl hz TX)
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;f z-Momentum Equation )
i .
R
: u  ow wo aw
- —_ —£ 4+ L +v — +K, uw,+K,3wlv+u2 — (K|ycscal
) h, ax h, ay -0 - 9z
3 ) s
o U, aw[C Wie 2
Wy = _— A — + —_— "t K') u w + K)kw v + u; - (KIZ CSC a' (33‘
i hle aX h2e e e Fis Z &8 e [ az €
: ' 2 hh, i
+ — T
i This set of equations can be transformed by using a similar set of transformed parameters as

described in Reference 7, with the same modifications as used in the previous section. The final
i transformed first-order partial differential equations can be summarized as follows:

e x-Momentum Equation

-~ ~ ~ ~ —~ o~
lalaz h\') + (v + m|3 u) G e 02 (m:L - al mzd) u- — 0'2 mls n uv

- % 34
tae,m) = "zmm““a?
7-Momentum Equation
la,a, bt + (I + m, w G — aa, m4TiW —~ a; m; w2 — aa, mg'ﬁ'2
. (35)
—~— ~ oW
Continuity Equation
T (36)
—ayMenV = ay My —
2 Mhys RIRLLY) Y

The condition at the edge of the boundary layer is changed to W = w,/u . All the other

parameters are the same as the ones for the general 3-D case except:
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NUMERICAL CALCULATION

NUMERICAL METHOD

Since the governing boundary-layer equations derived previously are parabolic, a numerical
marching scheme is adequate for obtaining a solution. The marching process is started at an initial
station in the bow region and is continued downstream. In the crossflow direction, the calculation
proceeds from the keci line to the water line. The flow at the initial station was solved by assuming all
m;, = 0 except m| = 0.5, which is a flat-plate solution Equations (34) to (36) along the keel line are
then employed to start the cross-stream sweep. Keller > box method! is used as the numerical solution
scheme. This method is accomplished by first diffcrencing the transformed boundary-layer Equations (26)
to (30) with central differences. Newton's method is then applied to linearize the difference equations
and, finally, the linearized system is solved bv a block elimination method. Details of this scheme may be
found in Reference 18.

The computations were carricd out <n the DTNSRDC CYBER 176. Typical run times were 80 s
for one boundary-layer sweep on an 87 x |5 surface grid with an average of 60 normal grid points.

PROCEDURE FOR UPDATING OUTER-EDGE BOUNDARY CONDITIONS

An iterative procedure between the boundary layver solution and the potenual solution is generally
necessary in order to account for the strong interaction between these two regions of ship stern
flows.>08 This interaction is usually considered by using the displacement-body concept at v - 4* or the

equivalent-source concept at y = O (Reference 191 The disadvantage of using the former approach is
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that a new grid of the displaced body must be generated for each iteration. Although the latter approach
avoids the complexity of regenerating the grid for each iteration, a divergent source distribution is often
encountered at the stern region. Improper treatment of this ill-behaved source distribution causes the .
global iteration to be divergent.20-2! This problem becomes more serious when flow separation exists in
the stern region.
In order to validate the present program for 3-D curvature effects and to avoid the problems
associated with the displacement-body and equivalent-source approaches, a simple procedure was used to
account for the thick boundary-layer effect. In this procedure, firstly (i) the boundary conditions at y = ¢
are obtained from the potential-flow solution at the body surface for the first iteration. For the second or
higher iterations, these conditions are recaiculated as the off-body points from the singularity distribution

t DN LRI
4 & 2 4 v a LR ]

! for the original body. The locations for applying the boundary conditions are obtained from the previous
;:It boundary-layer solutions. Secondly, (ii} the normal pressure gradient, as given by Equation (11), is solved
‘ by varying 3p/2x and 3p/az linearly fromy = 0 toy = 4 for the curvature effect only.

k- COMPARISON OF EXPERIMENTAL DATA WITH NUMERICAL PREDICTIONS

Wind-tunnel test data'3.!3-16 have been collected at DTNSRDC for the so-called axisymmetric
' Afterbody 1 and for two three-dimensional bodies of 2:1 and 3:1 elliptic cross-sections. The latter two
three-dimensional bodies are generated from axisymmetric Afterbody 1 by

—~ +az° = r(% 37

for an elliptic cross-section on the YZplane; r is the corresponding axisymmetric radius at X, and a is
equal to 2 or 3, respectively, for the 2:1 or 3:1 body. A plot of cross-sections at the same x-location for
these three bodies is shown in Figure 2. All three models have a length L = 3.066 m and were tested in
- a wind tunnel at a nominal speed of 30.48 m/s. Figure 3 shows the surface longitudinal and transverse
E curvatures of Afterbody | in the stern region. Since the order of magnitude of the longitudinal

- curvatures for the two 3-D bodies is the same as that of Afterbody I, Figure 3 only shows, at a typical
station. the transverse curvatures K5, in the girthwise direction, indicated by 8 as defined in Figure 2.

for both 3-D bodies. The 3:1 body has the least transverse curvature when 6 is between 0° and 80°. It
- also possesses the largest K5, value when 6 exceeds 80°. and reaches a maximum at 6 = 90°.
Boundary-layer computations were done first for the flow around axisymmetric Afterbody | in

‘l

order to validate the ability of the program to include curvature effects across the boundary layer. The

-

computations were started with laminar flow and transitioned to turbulent flow at x/L. = 0.03. The
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pressure coefficient distribution computed from the potential flow solution for the displaced body'* is
plotted in Figure 4a as compared to the measured distribution. This calculated pressure distribution was
used as the boundary condition for the following program validation runs. In Figures 4a and 4b, five sets
of velocity predictions are shown along with the measured velocity profiles. These calculations are (i) 3-D
thin boundary-layer calculation, indicated by K3 = K,; = 0 in Figure 4a; (i) 3-D boundary-layer
calculation with only transverse curvature effect, indicated by K3 = 0. K,; in Figure 4a. (iii)
axisymmetric boundary-layer calculation?? including only the transverse curvature, indicated by
axisymmetric calculation in Figure 4b; {iv) 3-D boundary-layer calculation with both Jongitudinal and
transverse curvature effects. indicated by K ;. K5 in Figure 4a; all the above four calculations use
Cebeci-Smith turbulence closure, (v) 3-D boundary-layer calculation with both curvature effects and the
modified turbulence model. indicated by K. K;3, and modified turbulence modeling in Figure 4a. The
axisymmetric boundary-layer calculation (iii) solves the boundary-layer equations and includes the
transverse curvature effect for axisymmetric flow. In terms of numerics, calculation (iii} is an exact
solution of calculation (ii). Comparisons of calculation methods (ii) and (iii) are shown in Figure 4b
Velocity predictions from all calculation methods, except (iii), are shown in Figure 4a. As suggested by its
order of magnitude, the transverse curvature exerts a significant influence on the velocity predictions,
particularly in the outer region of the viscous layer. The effect of the longitudinal curvature on the
velocity prediction shows no influence at x/L = 0.846 and | to ~ 2% in the region close to the wall at
x/L = 0.934. More importantly in this “inner region”, the velocity prediction in Figure 4a using two
different turbulence models (Cebeci-Smith and modified) are significantly different. The good agreement
of calculations (i) and (i) indicates the need to include the curvature effects in 3-D boundary-layer
computations. The good agreement between the predictions of calculation (v) and the measured velocity
profiles suggests that the modified turbulence model gives reasonable predictions for axisymmetric flow.

Based on the findings for axisymmetric Afterbody 1. predictions of the flow about the two 3-D
bodies were made for the following approximations in order to examine the significance of the curvature
effects and the turbulence modeling. Thus. they are

(i) Thin boundary-layer calculation with the Cebeci-Smith model and using the calculated potential
flow solution at the wall 'pr' as the boundary conditions.

it Thin boundary-layer calculation with the Cebeci-Smith model and using the boundary

conditions (('PL,) obtained from the potential solution at the edge of the boundary layer.

The following three caleulations use €, and the caleulated values of K5 and K3 obtained from
Fquation (7). The boundary-layer calculations were performed by using the procedures described
previously for updating the edge boundary conditions. The turbulence model for cach calculation is:

it Cebeci Smith turbulence mode!
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(iv) Modified turbulence model
(v) Huang’s turbulence model v)
The potential flow solution was obtained by using the XYZ potential flow code,2? which utilizes Hess- .
Smith's method?4. Calculation methods (i) and (ii) show the effect of the thick boundary layer, and
calculation methods (ii) and (iii) show the effect of the added curvature terms. The results of the last
three calculations illustrate the significance of the turbulence modeling.
Figure 5 shows plots of two different calculated Cp distributions used as the boundary conditions
pr and Cpe. Measured values of pr and Cpe are also shown in Figure 5 for comparison. Although the
measured data vary from station to station, this figure indicates that the pressure variation across the
boundary layer becomes large when 6 increases. The calculated Cpe values agree reasonably well with the
measured Cpe values. The calculated pr values, however, have too strong a girth-wise adverse pressure
gradient for 8 between 80° and 90°. This behavior is responsible for the earlier predicted separation.
which will be discussed later. The predicted drop-off of Cpe values near 8 = 90° and x/L. = 0.89 is also
associated with this earlier predicted separation. With the prand Cpc values shown in Figure 35, the
actual magnitudes of the crossflow velocities used in the computations introduced in Equations (13) and
(14) are plotted in Figure 6. Although the experimental data are quite scattered, the predicted w, values
are somewhat larger than the measured values, except at x/L. = 0.719 for the 3:1 body.
The predicted axial velocity profiles are shown in Figures 7a and 7b for the 2:1 body and Figures
8a and 8b for the 3:1 body. Results of calculation (ii) are¢ shown in all figures as baselines for comparing
the relative magnitudes of the predictions. Separation is predicted when flow reversal occurs in the axial
direction and the calculation stops at the predicted separation point. Therefore, at each 8-value, no profile
is plotted downstream of the separation point. Table 1 shows the predicted separation locations Xsep and
Osep for each case as compared to the experimentally observed locations of separation for the 2:1 body
and Table 2 for the 3:1 body. Calculation set (i) predicts early separation. The other four calculation sets
predict the locations of separation inception within 3% of the observed values. Figure 3 indicates that at
x/L = 0.894 the transverse curvature for axisymmetric Afterbody | equals those of the two 3-D bodies
near 6 = 80°. As 8 increases further, the curvature becomes larger for the two 3-D bodies. But the
predicted velocity profiles in Figure 4 for axisymmetric Afterbody 1 respond more strongly to the
curvature effect than those in Figures 7 and 8 for the two 3-D bodies. This is due to the three’
dimensionality of the latter predictions.
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Figure 7 — Axial Velocity Predictions for the 2:1 Body
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Figure 8 — Axial Velocity Predictions for the 3:1 Body N
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TABLE | — PREDICTED LOCATIONS OF SEPARATION INCEPTION COMPARED TO
THE EXPERIMENTAL OBSERVATION FOR THE 2:] BODY

. Boundary Curvature Turbulence /Ly P
- Condition Effects Modeling “sep sep
: Experiment 0.90 R(O° ~ 90°
._ Predictions
{1 Wall No cs 0.773 90°
(i) Edge Ne CS 0.894 80.7°
- (i) Edge Yes CS 0.934 83.2°
. (iv) Edge Yes Modified 0914 85.6°
‘ (v) Edge Yes Huang 0914 80 9°
*Cebeci-Smith

TABLE 2 — PREDICTED LOCATIONS OF SEPARATION INCEPTION COMPARED TO THE

£ EXPERIMENTAL OBSERVATION FOR THE 3:1 BODY
Boundary Curvature Turbulence /L) P

. Condition Effects Modecling T hep sep

. Experiment 0.92 80° ~ 90°

Predictions

: 1 Wall No S 0.834 90°

T i Edge No S 0.934 75°

] iy Edge Yes CS 0.956 75°
iv) Edge Yes Modified 0.934 85.6°
(vi Edge Yes Huang 0.907 90°

*Cebecr-Smith

The last three calculation sets for both 3 D bodies show the effect of turbulence modeling. Huang™s
turbulence model (calculation method (vir underestimates the wmner region veloeity as compared to the
A Cebeci-Smith model (calculation method aim. Because of the overprediction of €4 in Equation (21) for the
i modified turbulence model. calculation method (ivh gives the worse predictions. This overprediction of &
is related to the use of local curvature and boundary layer parameters. Although the Cebeci-Smith
turbulence model does not include curvature effects. it works better in terms of velocity prediction than
: the other two turbulence models for the two tested 3 D bodies. Figure 9 shows the eddy viscosity
f’ . comparisons tetween the measured data and the caleulated values by the Cebecr-Smith model and
27
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Huang’s turbulence model (indicated by dashed line). Huang's turbulence model closely predicts the levels s
of the eddy viscosity in thick boundary layer. as compared to the measured data. but it underpredicts the
velocity profile in the inner region unlike the Cebeci-Smith model.

Generally, the predictions of calculation method (ih). including the ones at x/L = 0.719 and 0.810.
and 8 = 90° for the 3:1 body, are in good agreement with the measurements. The deviation of the
predicted velocity from the measured velocity at 8 = 90° and x/L. = 0.854: 0.894 for the 3:1 body in

Figure 8 may be related to the proximity of the measurements to the separation point.

CONCLUSION
Three-dimensional thick boundary-laver equations. including varnations of the metric coefficients.
surface curvatures and static pressure coefficients with the normal distance from the wall. are solved by
using the marching technique of Keller's box method. A nonorthogonal surface-fitted coordinate system is
used. Formulas for calculating second-order geometric parameters are derived. Three turbulence models.

two of which include the curvature effects. using the eddy-viscosity concept are compared. Three sets of

measured data. for one axisymmetric and two 3-D flows are compared with calculated results. The

-4

conclusions drawn from the present study can be summarized as follows: . _j.'i

iy The 3-D boundary-layer computations with varving geometric curvatures in the normal ;T'j:'.:‘

direction have been validated by comparing the axisymmetric boundary layer caiculations 1o 1
experimental data. :

(i The predictions show a significant improvement in the present solution procedures by including
the variation of transverse and longitudinal curvatures across the thick turbulent stern flows.

tii The calculation procedure that uses the edge boundary conditions ((‘pcb for a thick boundary
layer predicts a more accurate flow separation location for a separated flow than that using the

surface boundary condition {C ).

{ivi The modified turbulence modeling. which uses the local curvature and local boundary-layer

parameters, works reasonably well for axisymmetric flows but not as well for 3-D flow. ‘j’.l

v} Although Huang’s turbulence model correlates eddy viscosity distributions 1n thick boundary L]
layers better than the Cebeci-Smith model. the velocity predictions using Huang's model ]

. . : . 1
underestimate the inner-region velocity. y
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APPENDIX

DERIVATION OF INNER-LAYER EDDY-VISCOSITY EQ. (19) L;;;

. For a small pressure gradient flow. the x- and z-momentum Equations (9) and (10) in the inner P_.;.j
region of the viscous layer can be approximated by :::::'i

~\

a d
_ (hl h') T" = — ‘hl hw T/' = 0 (A”
ay - ay -

P
'-. l.l...
el

Y
.l

Integrating Equation (A.1) leads to

’
i .
Lndad el

...
(s
S
.

%
{
e

»-r

5
apayT =T, T e (A.2)

~

.

s,
.

The subscripts s and w stand for the streamline direction and the wall. By introducing the following
nondimensional guantities.
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and by means of the cddy-viscosity concept. the Equation (A.2), in the fully wrbulent flow. can be

written i the nondimensional form as

du' , du’
W o, .(TY——’ = (A4
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By comparing Equation (A.4) to the formulation of the eddy viscosity as shown in Reference 12 for 2-D
flows, Equation (19) can be obtained.
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